Home » 10 Billion People for Dinner: Nina Fedoroff at TEDxCERN (Full Transcript)

10 Billion People for Dinner: Nina Fedoroff at TEDxCERN (Full Transcript)

Nina Fedoroff at TEDxCERN

Nina Fedoroff – TRANSCRIPT

I’m here today to challenge the way we think about food and civilization. We live in a mobile, highly-technological, largely urban civilization; our food markets are bursting with produce.

We have an amazing global system that brings food from all over the world to those who can buy it; and there’s the rub to those who can buy it. In 2008, the food prices spiked and food riots broke out in 30 countries; governments fell. At the time, I was working as the science advisor to the US Secretary of State, then, Condoleezza Rice. She asked me to organize a high-level meeting on this food price crisis. Secretary of Defense Bob Gates was there; he understood the implications.

In the ensuing years, food prices moderated, then spiked again, and the Arab Spring began.

(Video starts) (Moderator: Angry protesters burning tires, blocking roads, and attacking the police with fireworks in the Algerian capital They are protesting over the rise in food prices and unemployment (Arabic). We do not accept this government because we’ve been suffering for ten years and ten more years are coming, and nothing will have changed. (Moderator) Anti riot squads deployed in many Algerian cities as a simmering anger threatens massive protest in the oil and gas-rich North African country. (Rioters) The government is humiliating us, they’re raising the price of sugar. We have to pay the rent, the electricity, water, sugar,and oil; we’re all poor. (Video ends)

You all know how that came out; and if you think that’s a coincidence, watch this: the red lines mark when, and the flags mark where food riots happen – a scary thought. Can the stability of governments, indeed civilizations, ride on food? Let’s go back for a moment and look at how civilizations started. For most of our history, we were hunter-gatherers.

ALSO READ:   Brandy Gillmore: Could This Be The Missing Link to Your Health? at TEDxSantaBarbara (Transcript)

We spent our days gathering and capturing food. Then, about 10 or 20,000 years ago, we began to adapt plants and animals better to our own deeds, and settle down to grow and herd them. That, of course, is called agriculture, and it allowed us to feed more than ourselves and our families. We could feed scribes, artisans, warriors, and kings. These are scenes from a 3,000-year-old Egyptian tomb.

Cities and civilizations flourished. What I’m saying is simply this: all of human civilization emerged because we figured out how to produce surplus food. For millennia, civilizations rose and fell, lasting largely until the land wore out or until the neighbors invaded having worn out their own. Even at the turn of the 18th century, Thomas Malthus told us that we were doomed to hunger and strife because our numbers inevitably grew faster than our ability to produce food. If Malthus thought the game was over when we were just a billion people on the face of the earth, how did we get to today’s seven billion? It was just about the time Malthus was penning his gloomy predictions that science began to enter agriculture in earnest.

Over the next two centuries, three key innovations transformed agriculture. These were: synthetic fertilizer, genetics, and the internal combustion engine. These three innovations set in motion the most profound changes in human civilization ever. Plants do something quite extraordinary: they make sugar out of water, in thin air; well across the carbon dioxide in the air. We also need nitrogen, but most plants can’t use atmospheric nitrogen.

Manure contains nitrogen in the right kinds of compounds, and of course, it’s been used since time immemorial to fertilize crops. The problem is there isn’t much nitrogen in manure so it takes a lot of it to fertilize crops, and of course, you have to feed the animals that produce the manure. About a century ago, Fritz Haber and Carl Bosch figured out how to convert nitrogen in the atmosphere to compounds plants can use. That’s done in huge plants all around the world today.

ALSO READ:   Tim Desmond: "The Self-Compassion Skills Workbook" @ Talks at Google (Transcript)

And then, there’s genetics. This is Nobel laureate Norman Borlaug, the father of the Green Revolution that put the countries, the populace, and famine-plagued Asian countries on the road out of poverty. What you might not know is that the Green Revolution was based on mutations, genetic changes that allowed plants to use fertilizer, nitrogen fertilizer, more efficiently, doubling and tripling yields.

Genetic modification, GM; today, we vilify that – I’ll get back to that. Then there’s the internal combustion engine: for most of human history, agriculture was back-breaking work and occupied most people. The populace remained largely agrarian even in developed countries, well into the 20th century.

As machines gradually took over the task, it requires fewer and fewer people to produce more and more food; people flow to cities, cities became hotbeds of innovation and collaboration; technology-driven wealth generation accelerated giving us all the machines, the gadgets, and the comforts of modern life, even the Internet and even Twitter.

What does the future hold? Was Malthus just plain wrong because he didn’t figure out science? Are there limits to how much, how many people the plant can provision? Will climate change help or harm? Let’s look at some trends. Population growth is slowing, but it’s not likely to stop much short of 10 billion; probably will go higher. As technology powers country after country out of poverty, people want to eat more meat; transitioning from a grain-based diet to a meat-based diet requires more grain; growing more grain requires more land, but there isn’t any more. In fact, we’re losing it faster to urbanization, salinization, and desertification than we’re adding it.

Pages: First |1 | ... | | Last | View Full Transcript