Home » How Data is Helping us Unravel the Mysteries of the Brain: Steve McCarroll (Transcript)

How Data is Helping us Unravel the Mysteries of the Brain: Steve McCarroll (Transcript)

Sharing is Kindness in Action!

Steve McCarroll – TED Talk TRANSCRIPT

Nine years ago, my sister discovered lumps in her neck and arm and was diagnosed with cancer. From that day, she started to benefit from the understanding that science has of cancer.

Every time she went to the doctor, they measured specific molecules that gave them information about how she was doing and what to do next. New medical options became available every few years. Everyone recognized that she was struggling heroically with a biological illness.

This spring, she received an innovative new medical treatment in a clinical trial. It dramatically knocked back her cancer. Guess who I’m going to spend this Thanksgiving with? My vivacious sister, who gets more exercise than I do, and who, like perhaps many people in this room, increasingly talks about a lethal illness in the past tense.

Science can, in our lifetimes — even in a decade — transform what it means to have a specific illness. But not for all illnesses. My friend Robert and I were classmates in graduate school. Robert was smart, but with each passing month, his thinking seemed to become more disorganized.

He dropped out of school, got a job in a store. But that, too, became too complicated. Robert became fearful and withdrawn. A year and a half later, he started hearing voices and believing that people were following him. Doctors diagnosed him with schizophrenia, and they gave him the best drug they could. That drug makes the voices somewhat quieter, but it didn’t restore his bright mind or his social connectedness.

Robert struggled to remain connected to the worlds of school and work and friends. He drifted away, and today I don’t know where to find him. If he watches this, I hope he’ll find me.

Why does medicine have so much to offer my sister, and so much less to offer millions of people like Robert? The need is there. The World Health Organization estimates that brain illnesses like schizophrenia, bipolar disorder and major depression are the world’s largest cause of lost years of life and work. That’s in part because these illnesses often strike early in life, in many ways, in the prime of life, just as people are finishing their educations, starting careers, forming relationships and families.

ALSO READ:   How Virtual Reality Can Improve Your Mental Health: Matt Vogl (Transcript)

These illnesses can result in suicide; they often compromise one’s ability to work at one’s full potential; and they’re the cause of so many tragedies harder to measure: lost relationships and connections, missed opportunities to pursue dreams and ideas.

These illnesses limit human possibilities in ways we simply cannot measure. We live in an era in which there’s profound medical progress on so many other fronts. My sister’s cancer story is a great example, and we could say the same of heart disease.

Drugs like statins will prevent millions of heart attacks and strokes. When you look at these areas of profound medical progress in our lifetimes, they have a narrative in common: scientists discovered molecules that matter to an illness, they developed ways to detect and measure those molecules in the body, and they developed ways to interfere with those molecules using other molecules — medicines.

It’s a strategy that has worked again and again and again.

But when it comes to the brain, that strategy has been limited, because today, we don’t know nearly enough, yet, about how the brain works. We need to learn which of our cells matter to each illness, and which molecules in those cells matter to each illness. And that’s the mission I want to tell you about today.

My lab develops technologies with which we try to turn the brain into a big-data problem. You see, before I became a biologist, I worked in computers and math, and I learned this lesson: wherever you can collect vast amounts of the right kinds of data about the functioning of a system, you can use computers in powerful new ways to make sense of that system and learn how it works.

Pages: First |1 | 2 | 3 | ... | Next → | Last | Single Page View