Skip to content
Home » Jennifer Doudna: How CRISPR Lets Us Edit Our DNA at TED Talk (Transcript)

Jennifer Doudna: How CRISPR Lets Us Edit Our DNA at TED Talk (Transcript)

Jennifer Doudna

Here is the full transcript of American biochemist Jennifer Doudna’s Talk on How CRISPR Lets Us Edit Our DNA at TED conference. 

Jennifer Doudna – American biochemist

A few years ago, with my colleague, Emmanuelle Charpentier, I invented a new technology for editing genomes. It’s called CRISPR-Cas9.

The CRISPR technology allows scientists to make changes to the DNA in cells that could allow us to cure genetic disease. You might be interested to know that the CRISPR technology came about through a basic research project that was aimed at discovering how bacteria fight viral infections. Bacteria have to deal with viruses in their environment, and we can think about a viral infection like a ticking time bomb — a bacterium has only a few minutes to defuse the bomb before it gets destroyed.

So, many bacteria have in their cells an adaptive immune system called CRISPR, that allows them to detect viral DNA and destroy it. Part of the CRISPR system is a protein called Cas9, that’s able to seek out, cut and eventually degrade viral DNA in a specific way.

And it was through our research to understand the activity of this protein, Cas9, that we realized that we could harness its function as a genetic engineering technology — a way for scientists to delete or insert specific bits of DNA into cells with incredible precision — that would offer opportunities to do things that really haven’t been possible in the past.

The CRISPR technology has already been used to change the DNA in the cells of mice and monkeys, other organisms as well. Chinese scientists showed recently that they could even use the CRISPR technology to change genes in human embryos. And scientists in Philadelphia showed they could use CRISPR to remove the DNA of an integrated HIV virus from infected human cells.

The opportunity to do this kind of genome editing also raises various ethical issues that we have to consider, because this technology can be employed not only in adult cells, but also in the embryos of organisms, including our own species.

And so, together with my colleagues, I’ve called for a global conversation about the technology that I co-invented, so that we can consider all of the ethical and societal implications of a technology like this.

What I want to do now is tell you what the CRISPR technology is, what it can do, where we are today and why I think we need to take a prudent path forward in the way that we employ this technology.