Michelle Simmons on Quantum Computation at TEDxSydney Conference (Transcript)

Here is the full transcript of UNSW quantum physicist Michelle Simmons’ TEDx Talk presentation on Quantum Computation at TEDxSydney Conference. Professor Simmons is the Director of the Australian Research Council Centre of Excellence for Quantum Computation and Communication Technology, a Laureate Fellow and a Scientia Professor of Physics at the University of New South Wales in Sydney.

Listen to the MP3 Audio: Quantum computation by Michelle Simmons at TEDxSydney


Every year computers get smaller and smaller, and faster and faster. Have you ever wondered when is it ever going to end?

Well, one person that’s been looking at the miniaturization of computers over the last several decades has been Gordon Moore. And he’s the co-founder of Intel back in the 1960’s. And he noticed that the number of components on a silicon chip doubled roughly every 18 months to two years.

Now for this to happen, it means that the smallest feature size on a silicon chip has to decrease at the same rate. And he came up with something called Moore’s Law and here it is represented on the screen.

Now, this law has been going now for approximately 4 to 5 decades. And what started out as an observation by Gordon Moore has now become a law after his name, Moore’s Law. This actually continued in time.

The interesting thing is that the industry has now set this as their roadmap of how to make computers smaller and smaller, and faster and faster. So you have multi-trillion dollar industries, the semiconductor industries, pouring money in every year to try and beat that law. Until now it’s become a self-fulfilling prophecy.

See, if we have a look at where we are at the moment. Here is a cross-sectional Scanning Electron Microscope image of a single transistor. Now, the smallest feature size in this transistor is the distance here between the source and the drain. It’s about 30 nanometers. It’s 5,000 times smaller than the width of a human hair.

ALSO READ:   Authenticity's Impact on Democracy: Myriah Conroy at TEDxBoulder (Transcript)

What’s amazing about that is if you look around you now, we all carry around our personal electronics. And within one silicon chip you have over 3 billion of these transistors. And they all have to work reliably so that your computer, your mobile phone, whatever you’ve got with you, actually works. That’s quite amazing. Just think about that now. Everybody in this audience has got billions of transistors. There are trillions of transistors in this room.

But one of the nice things about Moore’s law is, you can actually predict with time what’s going to happen. And eventually you’ll see out here, in roughly 2020, less than 10 years away from where we are now, the size of a transistor will get down to the size where it’s a single atom. That’s the smallest component of nature. It’s very difficult to imagine that you could make a transistor any smaller than that.

But this is the world of digital information. So let’s just understand how that transistor works. Here, we have a silicon substrate. That’s what the transistors are made of. And above that we have an insulating oxide and then a metal gate. What we do is we apply a positive voltage to this top gate here, and that sucks up — attracts all the electrons that are in the silicon up towards this gate. But they can’t get there due to this insulating oxide. So they form this two dimensional sheet which forms a conducting channel between source and drain, and that turns the transistor on. That is our “1” of digital information.

If we now put a negative voltage on this gate, we repel the electrons down here and we push them away from that channel. So there is no conducting sheet and, as a consequence, you get the “0” of digital information. So that’s the ones and zeros as we go down. For everything that works around us now, everything is coded in either a “1” or a “0”.

ALSO READ:   What if Everything You Know is Wrong: Bob McDonald (Transcript)

And what happens as we go smaller and smaller in size, is we actually cross over from what we call the “Classical Age” to the “Quantum Age”. And there, things really start to change.

In the classical world, we understand how things work. So if I had a tennis ball now and I was to throw it at a wall, it would hit the wall and it would bounce back and I’d understand and I’d see it and be able to write equations of motions to describe that. But as I miniaturize things down and imagine that tennis ball being the electron in my transistor, if I made it very, very small and I threw that electron at the wall, instead of it bouncing back, it actually behaves more like a wave than a particle, and it can tunnel through the wall and it can come out the other side.

Pages: First |1 | ... | | Last | View Full Transcript

Scroll to Top