Paul Stamets on 6 Ways Mushrooms Can Save The World (Transcript)

Paul Stamets

 In this TED 2011 talk, mushroom biologist, Paul Stamets, talks about the antimicrobial properties of fungi, how they can be used as potent insecticides, and how they may help boost the human immune system. 

Listen to the MP3 Audio here: Paul Stamets on 6 Ways Mushrooms Can Save The World

TRANSCRIPT: 

I love a challenge, and saving the Earth is probably a good one. We all know the Earth is in trouble. We have now entered in the 6X, the sixth major extinction on this planet. I often wondered, if there was a United Organization of Organisms — otherwise known as “UOO” — and every organism had a right to vote, would we be voted on the planet, or off the planet? I think that vote is occurring right now.

I want to present to you a suite of six mycological solutions, using fungi, and these solutions are based on mycelium. The mycelium infuses all landscapes, it holds soils together, it’s extremely tenacious. This holds up to 30,000 times its mass. They’re the grand molecular disassemblers of nature — the soil magicians. They generate the humus soils across the landmasses of Earth.

We have now discovered that there is a multi-directional transfer of nutrients between plants, mitigated by the mcyelium — so the mycelium is the mother that is giving nutrients from alder and birch trees to hemlocks, cedars and Douglas firs.

Dusty and I, we like to say, on Sunday, this is where we go to church. I’m in love with the old-growth forest, and I’m a patriotic American because we have those. Most of you are familiar with Portobello mushrooms. And frankly, I face a big obstacle.

When I mention mushrooms to somebody, they immediately think Portobellos or magic mushrooms, their eyes glaze over, and they think I’m a little crazy. So, I hope to pierce that prejudice forever with this group. We call it mycophobia, the irrational fear of the unknown, when it comes to fungi.

ALSO READ:   Wipro Chairman Says Failure Is Essential Part of Process (Transcript)

Mushrooms are very fast in their growth. Day 21, day 23, day 25. Mushrooms produce strong antibiotics. In fact, we’re more closely related to fungi than we are to any other kingdom. A group of 20 eukaryotic microbiologists published a paper two years ago erecting opisthokonta — a super-kingdom that joins animalia and fungi together.

We share in common the same pathogens. Fungi don’t like to rot from bacteria, and so our best antibiotics come from fungi. But here is a mushroom that’s past its prime. After they sporulate, they do rot.

But I propose to you that the sequence of microbes that occur on rotting mushrooms are essential for the health of the forest. They give rise to the trees, they create the debris fields that feed the mycelium.

And so we see a mushroom here sporulating. And the spores are germinating, and the mycelium forms and goes underground. In a single cubic inch of soil, there can be more than eight miles of these cells. My foot is covering approximately 300 miles of mycelium.

This is photomicrographs from Nick Read and Patrick Hickey. And notice that as the mycelium grows, it conquers territory and then it begins the net. I’ve been a scanning electron microscopist for many years, I have thousands of electron micrographs, and when I’m staring at the mycelium, I realize that they are microfiltration membranes.

We exhale carbon dioxide, so does mycelium. It inhales oxygen, just like we do. But these are essentially externalized stomachs and lungs. And I present to you a concept that these are extended neurological membranes. And in these cavities, these micro-cavities form, and as they fuse soils, they absorb water. These are little wells.

And inside these wells, then microbial communities begin to form. And so the spongy soil not only resists erosion, but sets up a microbial universe that gives rise to a plurality of other organisms.

ALSO READ:   Perspective is Everything by Rory Sutherland (Transcript)

I first proposed, in the early 1990s, that mycelium is Earth’s natural Internet. When you look at the mycelium, they’re highly branched. And if there’s one branch that is broken, then very quickly, because of the nodes of crossing — Internet engineers maybe call them hot points — there are alternative pathways for channeling nutrients and information.

Pages: First |1 | ... | | Last | View Full Transcript

Leave a Comment

Scroll to Top