Home » Ray Kurzweil on Get Ready for Hybrid Thinking (Full Transcript)

Ray Kurzweil on Get Ready for Hybrid Thinking (Full Transcript)

Sharing is Kindness in Action!

Ray Kurzweil

Full text of futurist Ray Kurzweil’s talk: Get ready for hybrid thinking at TED conference.

Listen to the MP3 Audio here: Ray Kurzweil on Get ready for hybrid thinking at TED


Let me tell you a story. It goes back 200 million years. It’s a story of the neocortex, which means new rind.

So in these early mammals, because only mammals have a neocortex, rodent-like creatures. It was the size of a postage stamp and just as thin, and was a thin covering around their walnut-sized brain, but it was capable of a new type of thinking. Rather than the fixed behaviors that non-mammalian animals have, it could invent new behaviors. So a mouse is escaping a predator, its path is blocked, it’ll try to invent a new solution. That may work, it may not, but if it does, it will remember that and have a new behavior, and that can actually spread virally through the rest of the community.

Another mouse watching this could say, “Hey, that was pretty clever, going around that rock,” and it could adopt a new behavior as well.

Non-mammalian animals couldn’t do any of those things. They had fixed behaviors. Now they could learn a new behavior but not in the course of one lifetime. In the course of maybe a thousand lifetimes, it could evolve a new fixed behavior. That was perfectly okay 200 million years ago. The environment changed very slowly. It could take 10,000 years for there to be a significant environmental change, and during that period of time it would evolve a new behavior.

Now that went along fine, but then something happened. Sixty-five million years ago, there was a sudden, violent change to the environment. We call it the Cretaceous extinction event. That’s when the dinosaurs went extinct, that’s when 75% of the animal and plant species went extinct, and that’s when mammals overtook their ecological niche, and to anthropomorphize, biological evolution said, “Hmm, this neocortex is pretty good stuff,” and it began to grow it.

ALSO READ:   Apple CEO Tim Cook Keynote at WWDC 2016 (Full Transcript)

And mammals got bigger, their brains got bigger at an even faster pace, and the neocortex got bigger even faster than that and developed these distinctive ridges and folds basically to increase its surface area.

If you took the human neocortex and stretched it out, it’s about the size of a table napkin, and it’s still a thin structure. It’s about the thickness of a table napkin. But it has so many convolutions and ridges, it’s now 80% of our brain, and that’s where we do our thinking, and it’s the great sublimator. We still have that old brain that provides our basic drives and motivations, but I may have a drive for conquest, and that’ll be sublimated by the neocortex into writing a poem or inventing an app or giving a TED Talk, and it’s really the neocortex that’s where the action is.

Fifty years ago, I wrote a paper describing how I thought the brain worked, and I described it as a series of modules. Each module could do things with a pattern. It could learn a pattern. It could remember a pattern. It could implement a pattern. And these modules were organized in hierarchies, and we created that hierarchy with our own thinking.

And there was actually very little to go on 50 years ago. It led me to meet President Johnson. I’ve been thinking about this for 50 years, and a year and a half ago I came out with the book “How To Create A Mind,” which has the same thesis, but now there’s a plethora of evidence. The amount of data we’re getting about the brain from neuroscience is doubling every year. Spatial resolution of brainscanning of all types is doubling every year. We can now see inside a living brain and see individual interneural connections connecting in real time, firing in real time. We can see your brain create your thoughts. We can see your thoughts create your brain, which is really key to how it works.

ALSO READ:   Angela Oguntala: Re-imagine the Future at TEDxCopenhagen (Full Transcript)

So let me describe briefly how it works. I’ve actually counted these modules. We have about 300 million of them, and we create them in these hierarchies. I’ll give you a simple example.

I’ve got a bunch of modules that can recognize the crossbar to a capital A, and that’s all they care about. A beautiful song can play, a pretty girl could walk by, they don’t care, but they see a crossbar to a capital A, they get very excited and they say “crossbar,” and they put out a high probability on their output axon.

That goes to the next level, and these layers are organized in conceptual levels. Each is more abstract than the next one, so the next one might say “capital A.” That goes up to a higher level that might say “Apple.” Information flows down also. If the apple recognizer has seen A-P-P-L, it’ll think to itself, “Hmm, I think an E is probably likely,” and it’ll send a signal down to all the E recognizers saying, “Be on the lookout for an E, I think one might be coming.” The E recognizers will lower their threshold and they see some sloppy thing, could be an E. Ordinarily you wouldn’t think so, but we’re expecting an E, it’s good enough, and yeah, I’ve seen an E, and then apple says, “Yeah, I’ve seen an Apple.”

Pages: 1 | 2 | Single Page View