Skip to content
Home » A New Way To Remove CO2 From The Atmosphere: Jennifer Wilcox (Transcript)

A New Way To Remove CO2 From The Atmosphere: Jennifer Wilcox (Transcript)

Here is the full transcript of Jennifer Wilcox’s talk titled “A New Way To Remove CO2 From The Atmosphere” at TED conference.

Listen to the audio version here:

TRANSCRIPT:

The Challenge of Capturing CO2

Four hundred parts per million: that’s the approximate concentration of CO2 in the air today. What does this even mean? For every 400 molecules of carbon dioxide, we have another million molecules of oxygen and nitrogen. In this room today, there are about 1,800 of us. Imagine just one of us was wearing a green shirt, and you’re asked to find that single person. That’s the challenge we’re facing when capturing CO2 directly out of the air.

Sounds pretty easy, pulling CO2 out of the air. It’s actually really difficult. But I’ll tell you what is easy: avoiding CO2 emissions to begin with. But we’re not doing that. So now what we have to think about is going back; pulling CO2 back out of the air. Even though it’s difficult, it’s actually possible to do this. And I’m going to share with you today where this technology is at and where it just may be heading in the near future.

Now, the earth naturally removes CO2 from the air by seawater, soils, plants and even rocks. And although engineers and scientists are doing the invaluable work to accelerate these natural processes, it simply won’t be enough. The good news is, we have more. Thanks to human ingenuity, we have the technology today to remove CO2 out of the air using a chemically manufactured approach. I like to think of this as a synthetic forest.

Methods of Direct Air Capture

There are two basic approaches to growing or building such a forest. One is using CO2-grabbing chemicals dissolved in water. Another is using solid materials with CO2-grabbing chemicals. No matter which approach you choose, they basically look the same. So what I’m showing you here is what a system might look like to do just this. This is called an air contactor. You can see it has to be really, really wide in order to have a high enough surface area to process all of the air required, because remember, we’re trying to capture just 400 molecules out of a million.

Pages: First |1 | ... | Next → | Last | View Full Transcript