The Secrets of Spider Venom: Michel Dugon (Transcript)

Michel Dugon – Zoologist

Well, hello. This is Sophie. It’s all right, don’t worry, everything’s going to be fine. There are some people on the balcony that are very happy to be up there now.

So this is Sophie — not Sophia — no, Sophie. She has a French name. And you wonder why?

So Sophie, for most people, is the incarnation of terror, really. She’s far too leggy, she’s far too hairy, and she’s far too big to ever be trusted.

But to me, Sophie is a fantastic feat of bioengineering. You see, Sophie is a testimony to all those creatures that have managed to survive since the beginning of time; all those animals that have managed to have offspring generation after generation, until this day.

You see, over one billion years ago, the first primitive cells started to evolve on this planet. It took spiders 430 million years to become what they are now: one of the most versatile, one of the most diverse and one of the most evolved groups of predators to ever walk this earth.

It’s actually quite sporty to give a speech while wrangling a tarantula, I have to say.

So, we shouldn’t forget that Sophie — and in fact, all of us — we all are a testimony to all those ruthless battles that actually were won consistently by all our ancestors, all our predecessors. In fact, all of us, every single one of you, is in fact an uninterrupted, one-billion-years-old success story.

And in the gaze of Sophie, that success is partly due to what she has in her chest, just under her eyes. In there, she has a pair of venom glands that are attached to a pair of fangs, and those fangs are folded into her mouth. So, without those fangs and without this venom, Sophie would have never managed to survive.

Now, many animals have evolved venom systems in order to survive. Nowadays, any species of venomous snakes, any species of spider, any species of scorpion, has its own venom signature, if you will, made out of dozens, if not hundreds, of chemical compounds. And all of those compounds have evolved purely for one purpose: disable and eventually, kill.

ALSO READ:   Patrick Gentempo: Unleashing The Power of Philosophy at TEDxMinot (Transcript)

Now, venom can actually act in many different ways. Venom, believe me, can make you feel pains that you’ve never felt before. Venom can also make your heart stop within minutes, or it can turn your blood into jelly. Venom can also paralyze you almost instantly, or it can just eat your flesh away, like acid.

Now, all of these are pretty gruesome stories, I know, but, to me, it’s kind of music to my ears. It’s what I love.

SO WHY IS THAT?

Well, it’s not because I’m a nutcase, no. Just imagine what we could do if we could harvest all those super powerful compounds and use them to our benefit. That would be amazing, right?

What if we could, I don’t know, produce new antibiotics with those venoms? What if we could actually help people that are suffering from diabetes or hypertension?

Well, in fact, all those applications are already being developed by scientists just like me everywhere around the world, as I speak.

You see, hypertension is actually treated regularly with a medication that has been developed from the toxin that is produced by a South American viper. People that have type 2 diabetes can be monitored using, actually, the toxin produced by a lizard from North America. And in hospitals all around the world, a new protocol is being developed to use a toxin from a marine snail for anesthetics.

You see, venom is that kind of huge library of chemical compounds that are available to us, that are produced by hundreds of thousands of live creatures. And — Oh, sorry, she just wants to go for a little walk.

Spiders alone are actually thought to produce over 10 million different kinds of compounds with potential therapeutic application. 10 million!

And do you know how many scientists actually have managed to study so far? About 0.01%. So that means that there is still 99.99% of all those compounds that are out there, completely unknown, and are just waiting to be harvested and tested, which is fantastic.

ALSO READ:   3 Ways to Spot a Bad Statistic: Mona Chalabi (Full Transcript)

You see, so far, scientists have concentrated their efforts on very charismatic, very dangerous animals — vipers and cobras or scorpions and black widows. But what about all those little bugs that we actually have all around us? You know, like that spider that lives behind your couch? You know, the one that decides to just shoot through the floor when you’re watching TV and freaks you out? Ah, you have that one at home as well.

Well, what about those guys? Do they actually produce some kind of amazing compound in their tiny body as well? Well, an honest answer a few months ago would have been, “We have no clue.”

But now that my students and myself have started to look into it, I can tell you those guys actually are producing very, very interesting compounds. And I’m going to tell you more about that in a second.

But first, I would like to tell you more about this “we are looking into it.” How does one look into it?

Well, first of all, my students and I have to capture a lot of spiders. So how do we do that? Well, you’d be surprised. Once one starts to look, one finds a lot of spiders. They actually live everywhere around us. Within a couple of hours, we are capable of catching maybe two, three, four hundred spiders, and we bring them back to my laboratory, and we house each of them in its own individual home. And we give each of them a little meal.

Pages: 1 | 2 | Single Page View

Scroll to Top