David Brenner: A New Weapon in the Fight Against Superbugs (Full Transcript)


Here is the full transcript of stand-up comedian David Brenner’s Talk: A New Weapon in the Fight Against Superbugs at TED conference. 

David Brenner – Stand-up comedian

So we’re in a real live war at the moment, and it’s a war that we’re truly losing. It’s a war on superbugs. So you might wonder, if I’m going to talk about superbugs, why I’m showing you a photograph of some soccer fans — Liverpool soccer fans celebrating a famous victory in Istanbul, a decade ago. In the back, in the red shirt, well, that’s me, and next to me in the red hat, that’s my friend Paul Rice.

So a couple of years after this picture was taken, Paul went into hospital for some minor surgery, and he developed a superbug-related infection, and he died. And I was truly shocked. He was a healthy guy in the prime of life. So there and then, and actually with a lot of encouragement from a couple of TEDsters, I declared my own personal war on superbugs. So let’s talk about superbugs for a moment.

The story actually starts in the 1940s with the widespread introduction of antibiotics. And since then, drug-resistant bacteria have continued to emerge, and so we’ve been forced to develop newer and newer drugs to fight these new bacteria. And this vicious cycle actually is the origin of superbugs, which is simply bacteria for which we don’t have effective drugs. I’m sure you’ll recognize at least some of these superbugs. These are the more common ones around today.

Last year, around 700,000 people died from superbug-related diseases. Looking to the future, if we carry on on the path we’re going, which is basically a drugs-based approach to the problem, the best estimate by the middle of this century is that the worldwide death toll from superbugs will be 10 million. 10 million.

Just to put that in context, that’s actually more than the number of people that died of cancer worldwide last year. So it seems pretty clear that we’re not on a good road, and the drugs-based approach to this problem is not working.

ALSO READ:   Panti Presents All The Little Things at TEDxDublin (Full Transcript)

I’m a physicist, and so I wondered, could we take a physics-based approach — a different approach to this problem. And in that context, the first thing we know for sure, is that we actually know how to kill every kind of microbe, every kind of virus, every kind of bacteria. And that’s with ultraviolet light. We’ve actually known this for more than 100 years. I think you all know what ultraviolet light is.

It’s part of a spectrum that includes infrared, it includes visible light, and the short-wavelength part of this group is ultraviolet light. The key thing from our perspective here is that ultraviolet light kills bacteria by a completely different mechanism from the way drugs kill bacteria.

So ultraviolet light is just as capable of killing a drug-resistant bacteria as any other bacteria, and because ultraviolet light is so good at killing all bugs, it’s actually used a lot these days to sterilize rooms, sterilize working surfaces.

What you see here is a surgical theater being sterilized with germicidal ultraviolet light. But what you don’t see in this picture, actually, is any people, and there’s a very good reason for that. Ultraviolet light is actually a health hazard, so it can damage cells in our skin, cause skin cancer, it can damage cells in our eye, cause eye diseases like cataract. So you can’t use conventional, germicidal, ultraviolet light when there are people are around.

And of course, we want to sterilize mostly when there are people around. So the ideal ultraviolet light would actually be able to kill all bacteria, including superbugs, but would be safe for human exposure. And actually that’s where my physics background kicked into this story.

Together with my physics colleagues, we realized there actually is a particular wavelength of ultraviolet light that should kill all bacteria, but should be safe for human exposure. That wavelength is called far-UVC light, and it’s just the short-wavelength part of the ultraviolet spectrum.

ALSO READ:   Taming Your Wandering Mind: Amishi Jha at TEDxCoconutGrove (Transcript)

So let’s see how that would work. What you’re seeing here is the surface of our skin, and I’m going to superimpose on that some bacteria in the air above the skin. Now we’re going to see what happens when conventional, germicidal, ultraviolet light impinges on this.

So what you see is, as we know, germicidal light is really good at killing bacteria, but what you also see is that it penetrates into the upper layers of our skin, and it can damage those key cells in our skin which ultimately, when damaged, can lead to skin cancer.

So let’s compare now with far-UVC light — same situation, skin and some bacteria in the air above them. So what you’re seeing now is that again, far-UVC light’s perfectly fine at killing bacteria, but what far-UVC light can’t do is penetrate into our skin. And there’s a good, solid physics reason for that: far-UVC light is incredibly, strongly absorbed by all biological materials, so it simply can’t go very far.

Now, viruses and bacteria are really, really, really small, so the far-UVC light can certainly penetrate them and kill them, but what it can’t do is penetrate into skin, and it can’t even penetrate the dead-cell area right at the very surface of our skin.

Pages: 1 | 2 | Single Page View

Scroll to Top