Skip to content
Home » Storing Solar Energy in the Strangest Places: Will Chueh at TEDxStanford (Transcript)

Storing Solar Energy in the Strangest Places: Will Chueh at TEDxStanford (Transcript)


We use a lot of energy as a planet. By 2050, our average power consumption will be 28 terawatts, that’s 12 zeros after 28. The only resource that’s available to supply to this demand is the sun. We have about 100,000 terawatts striking at the Earth’s surface when the Sun is shining. And after we subtract away the ocean, mountains, and so forth, the usable energy is about 600 terawatts. So that’s still in far excess of our utilization.

But there’s a problem with the Sun; it doesn’t shine all the time, and it doesn’t shine everywhere. This is a picture, a photo, from the International Space Station showing the United States half in daytime and half in nighttime. This is one problem of the Sun.

The second problem is that the Sun doesn’t shine where we need it to shine. We have here London, Tokyo, and Chicago. So if you’ve been to these places or lived in those places, you know that the sunlight is not abundant. Yet, these are giant metropolises in which we have huge population centers.

So you may ask, “How about Texas?” There’s plenty of sun in Texas, right? That’s not entirely true. Even in the summer, you have thunder storms that limit the availability of the Sun. So the big problem with solar is that it is not available when and where it is needed, at least not all the time. So the vision we have is to make energy available when and where it’s needed.

So, roughly speaking, we can divide it into several processes. One, we have a carbon-free source, like the sun. We have to first capture it, then we have to think about how to store it – and that’s going to be the bulk of my talk today – we have to deliver it, and we have to utilize it. We already do this today, pretty well. We can take solar panels as a way to capture sunlight, turn that into electricity, we can store it in batteries, like our iPhones or electric cars, we can deliver it using the conventional electric grid, and we can use it.

But the problem lies with storage. It is not a perfect mechanism. With batteries it’s rather expensive, and it’s heavy, we’re carrying away dead weight with batteries most of the time, we’re not carrying the energy we need. It’s mostly just things that are inactive, you’re not storing the energy. Moreover, battery does not store electricity for a long period of time. If you look at your iPhone and so forth, it only lasts for maybe 30 days, or 60 days if we don’t charge it. So it will lose charge over time.

Pages: First |1 | ... | Next → | Last | View Full Transcript